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The main goal of this symposium is to discuss different conceptions of continuity, from Aristotle to 
the first set-theoretical developments of the notion, both in physics and mathematics. The 
discussion aims to highlight some aspects of what we take to be the philosophical and scientific 
depth of the notion of continuity. In particular, the reflexion on continuity will give us the occasion 
to make two main philosophical points: on the one hand, the mathematisation of the notion of 
continuity, which made it possible to develop some central empirical concepts in the physics of 
motion, allows us to argue for the thesis that mathematical language can play a central role in the 
conceptual elaboration of empirical sciences. On the other hand, the existence of different 
mathematical notions of continuity offers us direct evidence of cases of incommensurability in 
mathematics. In this connection, we will discuss the possibility of taking into account the change of 
meaning of a given term (e.g. ‘continuum’) in the semantic interpretation of our mathematical 
statements. The whole discussion will also point out two different lines on which the notion of 
continuity develops through the history of science: namely, a spatial model and a temporal one.  

The symposium’s discussion will be conducted as follows: the first talk analyses Aristotle’s 
notion of continuity as a property of both physical and geometrical objects that cannot be 
understood in set-theoretical terms. The second presentation takes into account the passage from the 
geometrisation to the mathematisation of motion, from Galileo to Varignon: in this connection, we 
will discuss how the mathematisation of the notion of continuity made it possible to develop some 
central empirical concepts in physics, by focusing on the role of mathematical language within a 
process of scientific change. Our third talk will analyse Descartes’ notion of continuity, highlighting 
how the theoretical force of the concept of continuity is determinant for the development of the 
Cartesian philosophical and geometric conception of space. The following presentation will deal 
with the development of a set-theoretical version of the notion of continuity, showing how 
Dedekind’s and Cantor’s constructions of the continuum in arithmetical terms can be seen as 
directly opposed to an Aristotelian, physical understanding of continuity: here the question will be 
how the change in the extension of of a given mathematical concept may be accepted, and which 
semantic account for mathematical terms - if any - may allow for that change to be taken into 
account.  



Finally, the last talk will connect the analysis of the Aristotelian notion of continuity with the 
reflection of the set-theoretical ones discussed, by pointing out the opposition between a temporal 
and a spatial model of continuity. Building on Hausdorff’s work, we will discuss the role played by 
this opposition in the set-theoretical genesis of topological spaces. 

The five presentations are interconnected and conceived in an interactive, dialogical way; 
moreover, a rich general discussion session will follow the talks. !!
i) Aristotelian Continuity 
The notion of continuity is of fundamental importance for philosophy and mathematics: its long and 
complex history starts with Aristotle. While he does not invent the term to suneches, he is the one 
who moves it out of the ontological and cosmological context, and makes of it a technical notion to 
be used in physical and mathematical inquiry, notably in connection with Zeno’s paradoxes of 
infinite divisibility. 

Aristotle’s codification of continuity is extremely influent, and sets the terms of the inquiry at 
least until the Early Modern period. Throughout this long history, however, it has usually been 
assumed that Aristotle’s continuity is nothing else than infinite divisibility – i.e. what we nowadays 
call ‘density’. Because of this, nowadays Aristotle’s account of continuity is often treated as at most 
an historical curiosity, not really relevant to the contemporary debate regarding the modern, post-
Dedekindian notion. 

This is, I believe, a mistake. A thorough reading of Aristotle’s texts (notably the Physics), reveals 
that the Aristotelian account of continuity is much more sophisticated and interesting than it could 
seem at first sight, and that it cannot be reduced to the mere infinite divisibility.  

Aristotle defines the term to suneches (the continuous) twice in the Physics: while it is the 
definition in terms of infinite divisibility (Ph. VI) that survived through the Middle Ages and the 
Early Modern period, I believe that the other, more complex formulation (Ph. V.3) is the most 
important one. This obscure definition does not refer directly to the property of continuity, but 
defines what it means, for an object, to be continuous to another one: understanding this relation 
provides the means to have an intuitive grasp on the property of continuity, which is never explicitly 
defined by Aristotle, but only alluded to. 

Starting from the definition of the relation given in Ph. V.3, however, it is possible to reconstruct 
the missing definition of the property of continuity: I will present it, and then analyse its 
characteristics, that go beyond the mere infinite divisibility. In such a way, it is possible to recover 
and understand the full powerfulness of Aristotle’s account, and to evaluate properly its relation to 
the contemporary theory of continuity. 

This means not only to cast light on the similarities and the invariants, but also to properly 
appreciate its peculiarities and the differences from the contemporary account. Notably, (i) 
Aristotle’s continuity is primarily a physical notion, and only secondarily a mathematical one; (ii) 
continuity is a property of objects (be them physical or geometrical), and there is nothing like the 



abstract object that we now call ‘the continuum’; (iii) what is continuous cannot be composed of or 
reduced to points: Aristotle’s understanding of continuity is not set-theoretical. !
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ii) On the Role of Mathematical Structures in Conceptual Change  
There is a common idea that mathematical structures are formal languages, and as such, they are 
supposed to have some kind of representational flexibility and conceptual neutrality, this is, they 
can be applied to different domains of phenomena and they can express pre-established content 
without affecting it. 

In a similar vein, it is widely accepted that mathematics played a central role in the conceptual 
development of empirical sciences. But this role is far from being fully understood, and it is not 
clear how it could be explained if we accept the thesis of the conceptual neutrality of mathematical 
language. 

I will argue that there is plenty historical evidence against this last thesis, notably, coming from 
mathematical physics. As various philosophers and historians of science have shown, there are 
cases in which the very content of ‘empirical concepts’ of scientific theories is deeply affected by 
the mathematical structure involved in the theory (see Toulmin 1953, Guisti 1994, Panza 2002, Blay 
1992 or Roux 2010). 

I will analyse of one of these cases in order to argue against the conceptual neutrality of 
mathematical languages. I will explain the passage from the geometrisation to the mathematisation 
of motion from Galileo to Varignon, trying to show how the mathematisation of the notion of 
continuity made it possible to develop some central (empirical) concepts from the physics of 
motion, notably that of instantaneous velocity.  



The main point of this analysis is to show how the use of geometrical methods of representation 
in physics posited serious constraints to conceptual development and conceptual use to physicists, 
and how some of these problems were solved when geometry was partially substituted by analytical 
methods of representation thanks to the development of infinitesimal calculus. !
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iii)Continuity in Cartesian Thought: Some Considerations About the Identification Between 

Extension and Matter in Cartesian Science. 
In general terms, the notion of continuity is used by Descartes in different parts of his work under 
different types of analysis, but obeying our own interests, we identify "continuity" with two 
principles in particular: 1) the identification of the body as a continuous extension and 2) continuity 
as a geometric property. On the one hand, we have "continuity" as an explanatory condition for 
physical phenomena and their magnitudes and, on the other hand, we have "continuity" as the 
property of the geometric space. 

If matter, according to Descartes, is identified with the property of extension, then matter is 
space; therefore, it is possible to show how the relationship between physics and geometry is 
dependent on the demonstration of continuity as a common property. The purpose of this argument 
is to denote the role of "continuity" in the explanatory process of Cartesian physics (through its 
theory of matter) and "continuity" in its conception of geometric space that allows us to create the 
bridge towards a geometric compression of physics. 

The purpose of our presentation is to emphasize a case where the theoretical force of the concept 
of "continuity" is determinant for the development of a certain philosophical and geometric 
conception of space, i.e. continuity as a property in the construction of geometrical forms and as a 
fundamental property of the composition of the physical world, based on the Cartesian mechanistic 
analysis of extension and matter. In other words, we will defend the idea that continuity is a 
theoretical key element for the ontology and metaphysics of Descartes, which has a direct and 
decisive impact on his conception of geometry and on his views about the composition of the 
material world and its interrelations. 
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iv) Continuity and Conceptual Change: Which Semantics for Mathematical Terms? 
The attention of the philosophical community has frequently been drawn to the fact that cases of 
conceptual change occur in mathematics (see Gillies 1992). This phenomenon is at work every time 
that, in the history of the discipline, incompatible descriptions of (what we take to be) the same 
object arise. However, the possibility of conceptual change (together with the overall attention to 
the mathematical practice) is often neglected when it comes to formalize the semantics of 
mathematical theories. 

We will show how the analysis of the notion(s) of continuity offers us direct evidence of the 
existence of incommensurability in mathematics. Our main focus will be on Dedekind’s definitions 
of continuity and the real numbers (Dedekind 1872), and on Cantor’s analysis of the continuum in 
terms of infinite point sets (Cantor 1895 - 97). These constructions of the continuum in arithmetical 
terms will be seen as directly opposed to an Aristotelian, physical understanding of continuity. 

The philosophical challenge posed by our case study lies in the question of how we may accept 
the possibility of the change of meaning of a given mathematical term (e.g. ‘continuum’), or the 
possibility of a change in the extension of the corresponding concept. In this connection, we will 
look to the semantics of mathematical terms, and to the ways in which these terms are taken to refer 
to objects. The problem of constructing a reference theory for mathematical terms that may be 
adequate to take into account the phenomenon of conceptual change will be approached starting 
from the assumption that the only epistemic access to mathematical objects that we have is a 
linguistic access (Azzouni 1997, Shapiro 2011). Buzaglo (2002)’s and Hannes Leitgeb 
(forthcoming)’s proposals on these issues will be considered. !
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v) La continuité, entre modèle spatial et temporel 
Cet exposé s’articulera à la fois à celui relatif au continu aristotélicien et à celui développant les 
perspectives dedekindiennes et cantoriennes. Notre objectif sera de mettre à jour une tension qui 
parcourt, dès Aristote, les conceptions de la continuité et partage celles-ci en deux modèles 
distincts : un modèle temporel et un modèle spatial. Cette démarcation entre ces deux lignes de 
force, et les tentatives de synthèse auxquelles elle a pu donner lieu, scande l’évolution de la notion 
et innerve également les premiers développements ensemblistes (pour lesquels la question du 
continu, comme problème de cardinalité mais aussi comme problème d’une analyse fine de la 
composition du continu linéaire, est particulièrement prégnante). Nous verrons notamment, avec la 
prise en compte du cas de Hausdorff et de son exploration axiomatique et relationnelle des concepts 
de temps et d’espace, que cette tension a joué un rôle non négligeable dans la genèse ensembliste 
des espaces topologiques. 

Après un retour sur les outils terminologiques élaborés par Aristote et sur son analyse de l’infini 
au livre III de la Physique, nous problématiserons la conception temporelle de la continuité qui se 
dégage de ces réflexions et l’opposerons à un modèle spatial (qui contrevient à la perspective du 
Stagirite). Nous montrerons ensuite que les premiers développements ensemblistes posent un 
nouveau cadre d’élaboration conceptuelle pour cette problématique classique –cadre qui a joué un 
rôle moteur dans le développement du vocabulaire et des approches topologiques (les espaces 
topologiques fournissant précisément un biais d’étude privilégié pour les applications continues). 
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