
Learning from a toy model: the Kac ring 

Scientific models misrepresent their target in that some features of  the target are omitted and 
some others are idealized. These omissions and idealizations are required for mathematical 
tractability. An important question is therefore how scientists can genuinely learn something 
from models. Answers to this question have centered on an analysis of  scientific models as 
approximate descriptions of  their target. Here models must distort as little as it is compatible 
with tractability (Bokulich 2008, 2011; Strevens 2008; Weisberg 2007). However such an 
analysis falls short in accounting for how toy models can teach us things about actual empirical 
systems — e.g., the Ising model, the Lotka-Volterra model or the Schelling model. Although it 
may be hypothesized that toy models are approximations of  the roughest kind, their degree of  
approximation is not a sufficient consideration to explain why they are useful in science. Toy 
models indeed do not aim to describe a particular empirical system for the purpose of  
providing any particular information about this system. They instead aim to capture general 
features of  a certain class of  systems in a way that make information about them easy to infer; 
this way involves deliberate strong distortions. 

In this paper, I contend that toy models are better analyzed in terms of  scientific caricatures 
than in terms of  approximate descriptions. What I call scientific caricatures are models that 
emphasize, even distort, some features of  the target and omit others for the purpose of  
facilitating the inferential work. In other words, scientific caricatures misrepresent their target 
for users to easily draw information from them. The condition for their success stands 
nevertheless in that their distortions be harmless: despite their omissions and idealizations, 
caricatures must still contain a minimal amount of  relevant accurate information about the 
target. 

In arguing for such an account of  toy models, I develop a case study. I elaborate on the way a 
toy model is used to study an attempt at explaining the second law of  thermodynamics. This 
model is the Kac ring (Kac 1959). The model exemplifies an irreversible macroscopic behavior 
in such a way that makes it possible for users to study the Boltzmann’s attempt — i.e. the H-
theorem — at explaining why macroscopic physical phenomena are irreversible while they 
result from microscopic phenomena which are reversible (e.g. Boltzmann 1877). 

In order to express the H-theorem (1872), Boltzmann studied mechanistically a non-
equilibrium ideal gas. He assumed that the gas particles interact by means of  repulsive short-
range and attractive forces. Thus he obtained an equation which describes the particle and 
velocity density. Boltzmann used the distribution function in order to introduce a new physical 
magnitude, which is the function H of  the gas. The theorem states that H decreases 
monotonically over time and reaches a constant value when the particle density in the system 
equals the density at equilibrium. 

Boltzmann also introduced the molecular chaos hypothesis (often called by the German term 
Stosszahlansatz). In accordance with this hypothesis, the number of  collisions between two 



groups of  particles during a certain period dt is proportional to their respective particle density. 
The hypothesis is highly criticized, in particular because one considers that it provides – rather 
than explains – the temporal asymmetry of  thermodynamical behaviors. 

The H-theorem is plagued by two famous paradoxes that lie at the foundations of  statistical 
mechanics: the “reversibility paradox” and the “recurrence paradox”: 

- the reversibility paradox: If  a gas starts from the initial state s0 and reaches the state St after 
time t, then, according to the H-theorem, Ht ≤ H0. Now if  the velocity of  every gas particle is 
reversed, the gas will come back to its initial state st’ = s0 after time t0 (= t), and H would still 
continue to decrease so that Ht’ = H0 ≤ Ht. Therefore H cannot decrease over time but remain 
constant, which contradicts the H-theorem. 

- the recurrence paradox: Based on Poincaré’s recurrence theorem – which states that a closed 
dynamical system comes back arbitrarily near its initial state after a sufficiently long period of  
time – H cannot always decrease over time and is expected to be periodic. 

I first present the Kac ring model which was introduced in 1959 by mathematician Mark Kac as 
an “analog of  the classical solution of  Boltzmann” to explain macroscopic irreversibility (Kac 
1959, p. 99). The Kac ring is a ring with N sites on it. On each site there is a ball which can be 
either black or white. At each time step, every ball moves counterclockwise to the next site. 
There is a certain number of  fixed actives sites on the ring, which have the following property: 
when a ball leaves an active site, it switches color, turning white if  it was black, black if  it was 
white. I explain why this model is a good representation of  the solution of  Boltzmann and in 
particular I show how it expresses the molecular chaos hypothesis. 

I second present the lessons that are usually drawn from the model: 

First the models accounts for the relaxation phenomenon of  a macroscopic system. An isolated 
system is at equilibrium when all its accessible micro-states are equally likely. Consequently the 
macro-state which results from the highest number of  micro-states is also the most likely. In 
the Kac ring, the equilibrium obtains when the number of  black balls equals the number of  
white balls. 

Second the model illustrates the reversibility and recurrence paradoxes. As I will show, it can 
find its initial state back and is 2N-periodic. 

I then argue that the Kac ring makes it possible to easily draw these lessons precisely because it 
is a scientific caricature that involves harmless distortions. It distorts the (already idealized) 
representation of  a gas system underlying system, thus highlighting the most relevant aspects 
of  the class of  systems being studied. 
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