On subsets, multiple realization and explanatory autonomy of biology

Abstract

The major argument to apply Shoemaker's subset approach to functional properties is to avoid the epiphenomenalist threat (Shoemaker 2001). It may furthermore be read as spelling out what ontological reductionism may precisely mean for higher-level, functionally defined properties. However, such important advantages may come at a high price: it seems that the subset approach finally excludes multiple realization of functional properties and consequently the explanatory autonomy of higher-level sciences, like biology. This paper aims at challenging that implication.

Introduction

The subset understanding of multiple realization can be summarized as follows (cf. Shoemaker, 2001, pp. 78-79): two tokens b_1 and b_2 come under *one* functionally defined biological type **B** if both have the *same function subset* (c_i). At the same time, b_1 and b_2 come under *different* physical types P_1 and P_2 since b_1 and b_2 differ in some non-functional disposition (c_1 - c_n). This leads to a paradox: it means that the functional disposition c_i is in each case a *subset* among the complete causal profiles of b_1 and b_2 when described by the physical types P_1 and P_2 , respectively. Consequently, physics may in principle construct a more focused type P as well, one referring only to that very c_i in both tokens as does B (cf. Kim, 2010, pp. 111-112; Shapiro, 2000, p. 647). This, however, is the *denial* of multiple realization. The aim now is to introduce a reductionist framework capable of dealing with multiple realization (section I) and solving this paradox (section II).

I) Dealing with multiple realization

The label "conservative reductionism" results from integrating multiple realization in a particular way: showing that multiple realization does actually *not* block an *in-principle* correlatability (hence "reductionism"), and that this does actually *not* imply replaceability (hence "conservative," *i.e.*, "non-eliminativist") (cf. Esfeld & Sachse, 2011). The argument can be subdivided into four steps:

1) Multiple realization *generally* means that biological property tokens (*e.g.*, b_1 and b_2) are functionally similar and thus fall under *one* functionally defined biological type **B** while

being at the same time physically different, and thus fall under *different* physical types (*e.g.*, P_1 and P_2). Uncontroversially, physical difference means a difference in causal powers/dispositions (Kim, 1999). However, contrary to common understanding the claim now is that for any allegedly non-functional causal difference between b_1 and b_2 , there exist environmental conditions that imply *functional* differences. For instance, even something as small as a single base silent mutation in genes (*i.e.*, one that still leads to the production of identical proteins) may actually affect the fitness of the organism in question in certain environments (cf. Esfeld & Sachse 2007). Therefore, type B, when applied to *physically different* biological tokens (b_1 and b_2), is descriptively/explanatorily adequate only in a *subset* of environmental conditions.

- By taking into account biologically traceable functional *differences* between tokens (b₁ and b₂) under *certain* environmental conditions, it is in principle possible to construct, in *biological* terms, so-called functionally defined "sub-types" (B₁ and B₂) of B. These subtypes can be conceived as follows: "type B + supplementary, context-dependent functional specification" (cf. Soom *et al.* 2010).
- 3) Because of the in-principle possibility of biology constructing such functionally defined subtypes (B_1 and B_2), *correlations* to physical types can be established. Roughly, if B is multiply realized by a property tokens coming under the physical type P_1 and by a property tokens coming under the physical type P_2 , then a functional subtype B_1 (respectively B_2) can be constructed, which is correlated/co-extensional with P_1 (respectively P_2).
- 4) Recall that the "supplementary, context-dependent functional specifications" spelled out by the subtypes B_1 and B_2 are biologically relevant only in *certain* environmental conditions. This is why there may be objective reasons not to replace type B (and thus actual biology and actual scientific practice) by subtypes B_1 and B_2 (which, in turn, may be replaceable by physical types). For instance, by applying insights from scientific explanation understood as unification (Kitcher, 1981) or by referring to causes and causal explanations that are *stable*, *proportional*, and *specific* (Woodward, 2010), one may argue as follows: it is an objective matter *how the world is*, whether rather fine-grained subtype- B_1/B_2 or physical explanations, or rather coarse-grained, abstract type-Bexplanations are more adequate.

II) Solving the dilemma

Importantly, the compatibility with ontological reductionism remains obvious when an actual biological type **B** applies to physically different biological property tokens (b_1 and b_2): **B** always refers to the very same *general* functional disposition c_i in all tokens (b_1 and b_2), whereas the subtypes B_1 and B_2 always refer both to that general disposition c_i and to respectively *different*, supplementary, context-dependent functional dispositions (say c_i * of b_1 and c_i ** of b_2) that result from the physical differences. This enables one to further clarify how two *identical* functional dispositions (what b_1 and b_2 share by falling under type **B**) may actually have *different* manifestation conditions: b_1 and b_2 both contain the very same functional disposition c_i , but in each case c_i is married, so to speak, with another disposition: c_i * in b_1 (tokens of subtype B_1), and c_i ** in b_2 (tokens of subtype B_2), respectively. Therefore, if c_i of b_1 is manifested in some environmental context, whereas c_i of b_2 is not, this is simply because b_1 and b_2 differ in their also having c_i * and c_i **, respectively.

The solution to the paradox now is that physics would *in principle* never construct a more focused type P, one referring only to that very c_i in both tokens as does B:

- Conservative reductionism started with the general notion of multiple realization, that biological property tokens (*b*₁ and *b*₂) coming under one functionally defined biological type *B* are *physically different*, and that physical difference means a difference in causal powers/dispositions.
- 2) This is still true once the subset approach is combined with the framework of conservative reductionism: the very same c_i in the property tokens b_1 and b_2 results from physical *differences* in the sense of physically different aggregates. Importantly, though, due to the physical differences between b_1 and b_2 , the same c_i is *always* accompanied by different, supplementary, functional dispositions: c_{i^*} in the case of b_1 and $c_{i^{**}}$ in b_2 .
- Consequently, while B always refers to the very same general functional disposition c_i in b₁ and b₂, this very c_i has partly *heterogeneous* manifestation conditions in the following sense: c_i of b₁ is manifested in some environmental context, whereas c_i of b₂ is not because b₁ and b₂ differ in their also having c_{i**}, respectively.

4) When typing b_1 and b_2 , physics would not make abstraction from such a heterogeneous context dependency unless giving up its goal of ideally *exceptionless* types that result from the perfect similarity of all tokens of one type. Put differently, even if it is *possible* for physics to construct a more focused type P about only c_i , it would not do so *in principle* since that would imply a spatio-temporally *restricted* type (as is B) such that the predictions and explanations coined in terms of P contain unexplained, unconsidered brute fact exceptions once applied to certain environmental conditions.

Conclusion

The concluding result may even be appreciated by anti-reductionists, since it does not imply that we should actually reduce biology to physics, but the *contrary*. The explanatory autonomy of the actual scientific practice, a biology with its generally functionally defined, and in that sense, both focused and abstract types, is in an *objective*, world-dependent manner vindicated *within* the framework of *subset* conservative *reductionism* that shows how actual and possible biological and physical types are related—and "lived happily ever after".

Bibliography

- Esfeld, M. & Sachse, C. (2011). Conservative reductionism. Routledge.
- Kim, J. (1999). Making sense of emergence. Philosophical Studies, 96, 3-36.
- Kim, J. (2010). Thoughts on Sydney Shoemaker's physical realization. *Philosophical Studies*, 148, 101-112.
- Kitcher, P. (1981). Explanatory unification. Philosophy of Science, 48, 507-531.
- Shapiro, L. (2000). Multiple realizations. The Journal of Philosophy, 97, 635-654.
- Shoemaker, S. (2001). Realization and mental causation. In: Gillett, C. & Loewer, B. (eds.) *Physicalism and its discontents* (74-98). Cambridge University Press.
- Soom, P., Sachse, C. & Esfeld, M. (2010). Psycho-neural reduction through functional subtypes. *Journal of Consciousness Studies*, 17, 7-26.
- Woodward, J. (2010). Causation in biology: stability, specificity, and the choice of levels of explanation. *Biology & Philosophy*, 25, 287-318.